Fast exponentiation via prime finite field isomorphism
نویسنده
چکیده
lard and Schnorr algorithm. Farther factorization of prime quadratic integer π = ρρ in the ring 4 [ 2] ± can be done similarly. Finite field r is represented as quotient ring 4 [ 2] /( ) ± ρ . Integer exponent k is reduced in corresponding quotient ring by minimization of absolute value of its norm. Algorithms can be used for fast exponentiation in arbitrary cyclic group if its order can be factored in corresponding number rings. If window size is 4 bits, this approach allows speeding-up 2.5 times elliptic curve digital signature verification comparatively to known methods with the same window size.
منابع مشابه
Finite Field Arithmetic
11.1 Prime fields of odd characteristic 201 Representations and reductions • Multiplication • Inversion and division • Exponentiation • Squares and square roots 11.2 Finite fields of characteristic 2 213 Representation • Multiplication • Squaring • Inversion and division • Exponentiation • Square roots and quadratic equations 11.3 Optimal extension fields 229 Introduction • Multiplication • Exp...
متن کاملNew characterization of some linear groups
There are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{Z}_{2}$ or $mathbb{Z}_{15}$. Still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of Sylow $p$-subgroups for each prime $p$, etc. In this...
متن کاملThe modular isomorphism problem for the groups of order 512
For a prime p let G be a finite p-group and K a field of characteristic p. The Modular Isomorphism Problem (MIP) asks whether the modular group algebra KG determines the isomorphism type of G. We briefly survey the history of this problem and report on our computer-aided verification of the Modular Isomorphism Problem for the groups of order 512 and the field K with 2 elements.
متن کاملHigh-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves
This paper describes the design of a fast software library for the computation of the optimal ate pairing on a Barreto–Naehrig elliptic curve. Our library is able to compute the optimal ate pairing over a 254-bit prime field Fp, in just 2.33 million of clock cycles on a single core of an Intel Core i7 2.8GHz processor, which implies that the pairing computation takes 0.832msec. We are able to a...
متن کاملAn Efficient Discrete Log Pseudo Random Generator
The exponentiation function in a finite field of order p (a prime number) is believed to be a one-way function. It is well known that O(log log p) bits are simultaneously hard for this function. We consider a special case of this problem, the discrete logarithm with short exponents, which is also believed to be hard to compute. Under this intractibility assumption we show that discrete exponent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006